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Abstract. In recent decades, Electroencephalography (EEG) has undergone 

extensive analysis and study, seeking to improve the brain signals knowledge. 

Given the importance of having EEG data available in contexts where it is 

unfeasible to obtain them, this work presents a methodology for the synthetic 

generation of these signals. Techniques and algorithms are described to simulate 

EEG frequency bands, incorporate noise, and emulate specific EEG phenomena. 

Using Python libraries, key functions for simulating EEG signals with different 

characteristics and morphologies are detailed. A Python-based tool, implemented 

through Dash, allows controlled generation of these signals with export options 

in various formats. Evaluation using EEGLAB ensures the accuracy and 

consistency of the generated signals, underlining the relevance of external 

validation. This initiative has potential in the research, diagnosis, and analysis of 

neurological diseases such as epilepsy, by offering a realistic synthetic approach 

to EEG signals. 

Keywords: EEG signals, sharp wave, slow wave, sharp-slow wave, rhythm 

bands, noise types. 

1 Introduction 

The Electroencephalogram (EEG) has been utilized over decades to probe into brain 

activity. When employed as a cerebral mapping tool, it can furnish spatiotemporal 

insights regarding brain function or dysfunction [1]. Its utility in combined research 

approaches, particularly with techniques like EEG-fMRI, is often undervalued, pushing 

EEG to ancillary roles, despite its potential for a comprehensive spatial analysis [1]. 

A seminal contribution of the EEG has been towards diagnosing and treating 

afflictions such as epilepsy. The EEG has facilitated the pinpointing of aberrant 

rhythms or transient wave patterns in cerebral regions, although certain constraints 

related to volume conduction and the inter-electrode distances persist [2]. Such 

localizations are paramount when ascertaining, for instance, the precise site of an 

epileptic lesion in the brain, thereby aiding in informed treatment decisions. 
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Advancements in digitization have augmented the interpretative capabilities of these 

signals, paving the way for intricate analyses that aim to discern intracranial sources 

and their interconnections [2]. Nonetheless, it warrants mentioning that electrode 

dimensions denote the integration of signals spanning 30–500 million neurons. 

Furthermore, scalp connectivity might introduce distortions to the resultant estimates 

[3]. These perturbations often obfuscate the understanding of inherent cerebral 

interactions, necessitating sophisticated methods to decipher the underlying neural 

dynamics [4]. 

Intriguingly, the morphological diversity in EEG readings, even adhering meticulous 

measurement paradigms, correlates with factors like age and the specific cerebral 

activity being observed. Hence, it is predominantly perceived as a stochastic signal. 

Notwithstanding, within minimal variability bounds, recurring patterns become 

discernible, predominantly in pathological states. It is observed that the EEG embodies 

significant inter-individual and intra-individual variances over time [5]. 

While these morphological diversities are consequential, their primary significance 

lies in their representational capacity of concurrent cerebral events, rather than being 

focal points of intrigue per se. In the epoch of machine learning, such data heterogeneity 

became pivotal for algorithm training and validation processes [5]. Concurrently, an 

extensive EEG dataset repository becomes indispensable to ascertain the robustness of 

data processing [5]. 

Positioned against this backdrop, the current endeavor embarks on crafting an 

application tailored for the synthetic generation of EEG signals, encapsulating 

clinically discernible morphologies. Such a tool becomes indispensable in enriching 

and diversifying the EEG signal repository available for scientific inquiries and 

educational purposes. 

This article is organized to first contextualize the significance of EEG in clinical 

diagnosis (Section 2) and then to detail the nature of EEG waves and their simulation 

(Section 3). The methodology of synthesizing EEG signals, including noise integration 

and the emulation of distinctive EEG phenomena, is presented in Section 4. Section 5 

evaluates the tool’s efficacy using EEGLAB, while Section 6 concludes with the 

study’s key findings and future research directions. 

2 Importance and Contextualization of EEG Signals in the 

Diagnosis of Neurological Disease 

Electroencephalogram (EEG) signals serve a paramount role in deciphering and 

diagnosing an array of diseases associated with the central nervous system (CNS). This 

diagnostic modality draws its essence from correlating specific EEG patterns with CNS 

functionalities, anomalies, and pathologies. Within the clinical settings, harnessing 

EEG signals fortifies the empirical skill in diagnosing cerebral afflictions, including 

convulsive and metabolic disorders. 

Such signals, emanating from extracellular potentials termed as field potentials, are 

the outcomes of both neuronal and glial activities. The CNS architecture comprises 

nerve cells or neurons, instrumental in electrical signal transmission, and glial cells. 

While glial cells don’t initiate action potentials akin to neurons, their association with 

ionic flows allows them to influence extracellular potentials. 
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Field potentials, stratified by their type and frequency, demand a thorough 

comprehension of their origin—be it due to neuronal or focal activity—for an apt 

clinical and diagnostic elucidation [2]. 

Central to this discussion is the acknowledgment of the quintessential waves within 

EEG readings. Segregated based on frequency, amplitude, and morphology, these 

waves encompass diverse patterns: spike waves, sharp waves, spikeslow wave 

complexes, and sharp wave-slow wave constructs [6]. These characteristic waves play 

a pivotal role in determining if an EEG trace leans towards being normal or denotes 

pathology. Specifically, the presence or absence of distinct waves or complexes can 

hint at disparate cerebral anomalies [6]. 

A pressing challenge in EEG analyses remains the manual deciphering of signals. 

Undertaking this intricate endeavor mandates a profound understanding of typical EEG 

activities, contingent on the patient’s age and clinical statuses. A meticulous 

identification of artifacts, technical anomalies, and borderline patterns is imperative. 

This discernment, demanding both time and specialized expertise, underlines the 

rigorous efforts EEG specialists investing reviewing and juxtaposing EEG traces, 

aiming for unerring diagnoses or to negate specific medical hypotheses [6]. 

2.1 Background 

Within the biomedical domain, a large number of tools and simulators have been 

conceived for biosignal generation and simulation. When focusing on EEG signals, 

these generative platforms have been crafted with distinct objectives and diverse 

methodologies. What follows is a comparative scrutiny of these instruments, 

emphasizing their attributes and limitations, subsequently delineating the unique 

proposition our endeavor offers in this realm.  

Table 1 illustrates the cardinal features of akin projects, offering insights that could 

potentially refine our current endeavor and/or corroborate the accurate generation 

of signals. Contrary to the previously discussed tools, this project focuses on the 

synthetic generation of EEG signals with notable morphologies. The use of Python as 

the main programming language to harness of the large number of available libraries, 

thereby creating an intuitive tool.  

This tool grants users the flexibility to dictate morphological patterns, t heir 

frequency, and spatial positioning. Developed using the Dash framework in Python, the 

interface is not only user-friendly but also encompasses several unique benefits, such 

as exporting data in diverse formats and affording a high degree of flexibility in 

parameter configuration. Fig. 1 presents some of the outputs from the projects outlined 

in Table 1. 

This initiative’s uniqueness becomes more pronounced when juxtaposed other 

available solutions against. For instance, the Simulated EEG data generator from the 

University of Oxford [7] and the ECG Simulator from Data Science Automation [8], 

while invaluable, don’t provide the same comprehensive set of features, especially 

concerning generating specific morphologies. 
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Table 1. Related works. 

Name Description Characteristics Institute Type Quote 

Simulated EEG 

data 

generator 

Generates EEG data based 

on two Event-Related 

Potentials (ERP) 

theories: classical and 

phase reset. 

EEG; Simulated EEG data 

generation; Classical and 

phase reset ERP theories; 

Matlab; Language: English. 

University of 

Oxford 

Open source 

CC BY-SA 

4.0 license 

[7] 

ECG Simulator 

NI-DAQmx HW 

compatible to generate 

pre-recorded or template-

based ECG signals. 

ECG; ECG signal 

generation; Platforms: 

Windows 10, 8.1, 7; 

Language: English; 

Data Science 

Automation 

(DSA) 

Commercial 

(Price not 

specified) 

[8] 

Synthetic ECG 

Signals model 

Proposes a math model to 

generate an artificial 

synthetic ECG signal based 

on real. 

ECG Signals Generation of 

synthetic ECG signals 

Trigonometric functions 

and Gaussian monopulse. 

University of 

Calabria, Italy 

Academic 

research 

(Article) 

[9] 

Simulating brain 

signals 

Synthetic EEG data using 

neuralbased generative 

models to enhance SSVEP 

classification. 

EEG signals; Synthetic 

EEG signals for SSVEP 

classification; Neural-based 

generative models like 

GAN 

and VAE. 

University 

Durham, 

UK. 

Academic 

research 

(Article) 

[10] 

Generation of 

Synthetic 

Biosignals 

through 

Timevarying 

Fourier Series 

Suggests a database 

encompassing synthetic 

biomedical signals based on 

real signal planes. 

Characterized by time-

frequency features, 

intended 

to mimic authentic 

behavior. 

Focus on cardiographic 

impedance signals; Uses 

Fourier series for modeling 

and synthetic signal 

generation. 

Quantium 

Medical 

SL 

Department 

Research 

document 
[11] 

EEGLAB 

Offers an opensource, 

interactive environment for 

EEG data processing within 

MATLAB. 

EEG (partial support for 

MEG and other); Signal 

analysis, visualization, 

preprocessing, source 

modeling, and statistical. 

Plugins and add-ons. 

University of 

California San 

Diego. 

Open source [12] 

MNE 

Tool tailored for analyzing 

and visualizing 

Magnetoencephalography 

(MEG) and EEG data. 

MEG and EEG; Signal 

analysis, preprocessing, 

visualization, source 

reconstruction, and 

statistics; Includes t/f 

analysis, ICA, CSP, dSPM, 

and others. 

Collaborative; 

No central 

institution 

Open source [13] 
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Concurrently, platforms like EEGLAB [12] and MNE [13] augment and enrich our 

work. EEGLAB serves as a signal processing tool, facilitating the import and analysis 

of the generated signals, thus verifying their integrity. MNE, on the other hand, refines 

the data formatting and processing, making the generated images resonate more with 

real EEG data. This is achieved by incorporating MNE-style visuals and leveraging 

Plotly graphics in Dash to capture user-specific sections. 

It’s also worth noting that, diverging from certain research propositions rooted in 

mathematical modeling, this project could be used in generative models powered by 

neural networks [10]. Our methodology emphasizes the temporal integration of 

elements categorized in specific frequency bands that synergize to establish 

distinguishable patterns. This tactic is reminiscent of strategies employed in ECG [9] 

and the creation of synthetic biosignals [11], grounding them in authentic 

signal paradigms. 

3 EEG Signals and Primary Characteristics 

EEG captures brain dynamics through electrodes placed on the scalp. Conventionally, 

these electrodes are organized according to the 10–20 system or its extension, the 10–

10 system, as described by Oostenveld and Praamstra [14]. In specific circumstances, 

electrodes can be positioned on the cerebral cortex, termed ECoG, or intracranially 

implanted. This approach yields less filtered, localized, and higher quality data. 

Nonetheless, being invasive entails greater associated risks. Both scalp EEG and 

intracranial signals are assessed for discernible patterns like epileptic spikes and 

ongoing background activity [15]. 

3.1 Waves 

In EEG recordings, the potential difference between two electrodes is termed a wave. 

These shifts in cerebral electrical activity are identified as patterns [6]. Proper EEG 

interpretation necessitates distinguishing between normal and abnormal 

characteristics [16]. 

Sharp Wave, Spike, Spike-Slow Wave, and Sharp Wave-Slow 

Wave Complexes: 

– Commonly referred to as spikes, these are transient waves distinguishable 

from background activity, lasting between 20 ms to just under 70 ms [2]. 

Characterized by their high amplitude and sharp morphology, these spikes 

might represent an event of overly synchronous neuronal discharge [2]. 

– Sharp waves, on the other hand, are also transient with a duration ranging 

from more than 70 ms to less than 200 ms, distinguished from background 

activity by their sharp peak at conventional paper speeds [8]. For its part, 

the Slow Wave-Point pattern, comprising a combination of sharp wave 

followed by a slow wave in the EEG, is commonly observed in typical 

absences or petit mal, but can also manifest in other clinical and 

epileptological conditions. Sharp waves represent a brief, synchronous 
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neuronal discharge, whereas slow waves may reflect the propagation of 

electrical activity through larger cortical circuits [9]. 

– Conversely, sharp waves are also transient, spanning over 70 ms but less 

than 200 ms. They stand out from the background activity due to their sharp 

 

                             a)                                                                            b) 

 

                             c)                                                                                d) 

 

                                   e)                                                                          f) 

 

g) 

Fig. 1. a) Simulated EEG data generator [7]. b) ECG [8]. c) Model for generating simple 

synthetic ECG signals [9]. d) Simulating brain signals: creating synthetic EEG data via neural-

based generative models for improved SSVEP classification [10]. e) MNE [11]. f) EEGLAB 

[12]. g) Generation of synthetic biosignals using time varying fourier series [10]. 
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peak [17]. The Spike-Slow Wave pattern, a sequence of a sharp wave 

followed by a slow one in the EEG, is often seen in typical absence seizures 

but can also be evident in other clinical and epileptologic situations. Sharp 

waves indicate a synchronous, brief neuronal discharge, whereas slow 

waves might suggest the spread of electrical activity through expansive 

cortical circuits [2]. 

– As per Niedermeyer and da Silva, slow waves are low-frequency, low-

amplitude electrical discharges in the EEG, enduring typically between 200 

and 500 milliseconds [2]. Although they might occasionally overlap with 

sharp waves, they’re chiefly defined as waves persisting over 200 ms [16]. 

Morphologically, slow waves exhibit a variable amplitude and a gentler 

waveform when contrasted with sharp waves. Notably, slow waves can 

correspond with the synchronized activity of neuron groups, reflecting slow 

depolarization processes and cortical spread. Such waves are observed in 

diverse clinical and epileptologic states, including deep sleep and specific 

seizure disorders [2]. 

Fig. 2, showcases generalized interictal epileptiform discharges in EEG signals, 

underscoring the previously discussed features. The depicted complexes have a 

pronounced amplitude, roughly 200 uV, with the alpha rhythm and background 

retaining a standard amplitude. Yet, due to the vertical scaling chosen for optimal 

visualization of epileptiform discharges, the latter might seem of diminished amplitude. 

The signals originate from an EEG recording of a 16-year-old with a history of absence 

seizures, even though he presently exhibits no epileptic episodes. Technical 

specifications of the recording are (LFF 1 Hz, HFF 70 Hz) [17]. 

Transient Events and Wave Complexes: A complex is typified as “a series of two 

or more waves with a characteristic or consistently repeated shape, distinct from the 

background activity” [17]. 

Complexes can manifest as diphasic, triphasic, or polyphasic waves. Typically, the 

term denotes a wave with at least three distinctive waveform components. These 

complexes are identifiable by specific features in a singular EEG channel, less defined 

than patterns which are determined by additional factors like positioning 

and dispersion. 

A transient event is demarcated as” an individual wave or complex, distinguishable 

from background activity” [17], marked by its pronounced disruption of the background 

activity and its duration. 

3.2 EEG Frequency Characteristics 

Clinical neurophysiology categorizes the EEG’s background activity into various 

rhythmic bands, from the Delta rhythm (0-4 Hz) extending to exceptionally high EEG 

frequency components, seldom considered in regular clinical assessments [16]. 

 Rhythmic Bands 

– Delta Band (d): Ranging from 0.1 to 4 Hz with amplitudes exceeding 50uV, this 

band typifies children younger than three months and Phase III of physiological 

sleep. It predominantly features regular, sinusoidal, or sawtooth-like waveforms. 
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– Theta Band (theta): Frequencies between 4 and 7 Hz, this band manifests with 

amplitudes surpassing 40uV and is predominantly fronto-central. Its waves can 

display various morphologies and are typically low amplitude. 

– Alpha Band (a): Located within 8 and 12 Hz, its amplitude is approximately 

15µV, dominantly in the occipital region. A distinguishing feature is its cessation 

during eyelid opening and intense concentration. 

– Beta Band (B): Characterized by regular waveforms lasting around 50 ms with a 

sinusoidal shape. As a faster variant of the Alpha rhythm, these waves usually have 

low amplitudes between 5-10 µV, though they can rise to 15-25 µV. Primarily 

found in the frontal and central regions, their frequencies are typically between 18-

25 Hz, but always above 13 Hz. 

– Gamma Band (Y): This represents the higher EEG frequencies, predominantly 

between 30-70 Hz. 

 The 1/f Statistical Behavior of EEG in the Noise Context and Its Types 

Through its 1/f statistical behavior, EEG has elucidated how cellular discharge 

microscopic rules and synaptic activity result in a complex system spread across various 

temporal scales. The inverse correlation between oscillation classes and the extent of 

neuronal engagement offers valuable insights into the brain’s large-scale, long-

term operations. 

A Fourier analysis, yielding a power spectrum across frequencies, presents a straight 

line on a log-log chart where the density logarithm is plotted against the EEG frequency 

logarithm, suggesting scale-free systems. This relationship is articulated as A ≈ 1/fa, 

where A symbolizes the amplitude (square root of power) and a is an exponent. This 

 

Fig. 2. Generalized interictal epileptiform discharges. Polyspikes precede the initial spike and 

the ensuing slow wave complex, with subsequent complexes also showcasing initiating 

polyspikes in individual channels. Edited from [17]. 
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infers that the EEG mirrors the brain’s internal noise, generated by both its active and 

passive components. 

However, the ’one over f’ power spectrum noise, or ’pink noise’, is peculiar. It is 

essential to recognize that the mean frequencies of adjacent oscillatory groups are not 

integers relative to each other, making synchronization challenging and resulting in 

metastable or transient dynamics. 

The log-log linear relationship gets disrupted below 2 Hz, possibly attributed in part 

to the high-pass filtering of the amplifiers utilized. Yet, extensive scalp recordings 

affirm a power-scaling behavior across all tested frequencies, lengthening the 1/f line’s 

temporal scale past a minute. The EEG introduces three primary noise types: 

– Pink Noise: Its power spectrum adheres to a 1/f relation, positioned between white 

and brown noise concerning predictability. 

– White Noise: Exhibits no correlation between frequency bands, maintaining 

consistent power density across a limited frequency range. Its spectrum is flat, 

represented mathematically as 1/f0. 

– Brown Noise (Brownian Noise): Pertaining to Brownian motion, this noise’s 

power density diminishes with frequency (1/f2) quicker than pink noise. It’s 

randomized over extended intervals but displays strong correlations over 

shorter spans. 

The cerebral cortex, owing to its intricate architecture, emanates the most intricate 

noise recognized in physics. A pivotal query is the brain’s rationale behind generating 

such intricate noise. 

Several theories postulate that the brain oscillators aren’t autonomous. Identical 

neurons and neuronal clusters orchestrate all rhythms. Oscillators at the cerebral level 

aren’t merely swayed by noise; they might be spawning self-regulated collective 

patterns that sequentially influence the behavior of their constituent neurons [18]. 

4 Methodology 

Over recent decades, the domain of Electroencephalography (EEG) has been intensely 

scrutinized, advancing the comprehension and characterization of cerebral signals. This 

progress has instigated the formulation of assorted tools and methodologies for the 

simulation and scrutiny of EEG data, particularly salient in scenarios where acquiring 

authentic signals is challenging or restricted. 

Electroencephalographic (EEG) waves, stemming from cerebral electrical activity, 

are represented as voltage discrepancies between two electrodes. These transient 

patterns, termed waves, offer invaluable insights into cerebral dynamics. While the 

developed code in this project relies on established neurophysiological and 

mathematical principles, it is imperative to emphasize the balance between precision 

and realism in simulations. Inherent in any simulation is the abstraction from reality, 

which may not fully encapsulate the intricacies found in genuine EEG recordings. 
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Algorithm 1. EEG Signal Generation with Frequency Bands and Noise Integration. 

Input: None  

Output: eeg_signal (synthesized EEG signal)  

1: Enumerate EEG frequency bands. 

These bands denote specific EEG frequency delineations. 

1.1: delta_band ← [0, 4] 

Establish frequency range corresponding to deep sleep. 

1.2: theta_band ← [4, 8] 

Identify frequency range associated with relaxation and meditative states. 

1.3: alpha_band ← [8, 12] 

Denote frequency range typically correlated with relaxation and absence of visual stimuli. 

1.4: beta_band ← [12, 30] 

Demarcate frequency range linked to active cognition and focus. 

1.5: gamma_band ← [30, 70] 

Pinpoint frequency range affiliated with perceptual processes and cognizance. 

2: Establish signal parameters. 

These parameters ascertain signal duration, sampling rate, and        temporal vector. 

2.1: duration ← 10 sec 

2.2: sampling_freq ← 500 Hz 

2.3: num_samples ← duration × sampling_freq 

2.4: time ← array spanning from 0 to duration, incremented by 1/ sampling_freq 

3: Initialize eeg_signal with zero-valued array. 

This array serves as the foundational canvas for impending band and noise superpositions. 

4: generate_band(freq_range, amplitude, duration, sampling_freq) function : 

Constructs a sinusoidal waveform with frequency and phase values chosen from a given range. 

4.1: frequency ← random selection within freq_range 

4.2: phase ← random selection between 0 and 2*pi 

4.3: Return amplitude × sin (2*pi × frequency × time + phase) 

5: Incorporate variegated amplitudes from delta_band into eeg_signal 

This procedure amalgamates multiple sinusoidal signals onto the foundational signal. 

6: Construct and standardize pink_noise 

Pink_noise is noise characterized by a power spectrum that diminishes with frequency. 

6.1: pink_noise ← accumulation of random Gaussian-distributed values. 

6.2: eeg_signal ← eeg_signal + pink_noise  

7: Produce and regulate white_noise. 

White_noise manifests uniform intensity across disparate frequencies. 

7.1: white_noise ← random Gaussian-distributed values. 

7.2: eeg_signal ← eeg_signal + white_noise  

8: Synthesize and modulate brown_noise. 

Brown_noise (or Brownian noise) exhibits correlations between time-series values. 

8.1: brown_noise ← cumulative random Gaussian-distributed values. 

8.2: eeg_signal ← eeg_signal + brown_noise 

9: Standardize eeg_signal 

Adapt the amplitude of eeg_signal to fit within a predetermined range. 

End of Algorithm 

Fig. 3. Pseudocode illustrates the synthesis of an EEG signal through the combination of varied 
frequency bands, notably Delta, and three noise types: pink, white, and brown. The culminating 
signal undergoes normalization to maintain a specified amplitude. 
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As we move forward, collaborative validation with esteemed EEG specialists 

becomes pivotal. As the project transitions into a public phase, this collaboration will 

facilitate iterative feedback, ensuring that the simulations retain as much realism and 

accuracy as possible. This approach underlines the importance of balancing theoretical 

knowledge with practical insights from experienced professionals in the field. 

4.1 Synthesis of EEG Signals 

Enriching our proficiency in signal analysis and comprehension necessitates tools 

capable of simulating EEG data, mirroring genuine patterns. Such simulations furnish 

avenues for testing nascent theories, affirming analysis techniques, and refining real 

EEG interpretations. 

This segment illuminates the methodology underpinning the synthetic generation of 

EEG signals, emphasizing their importance, simulation techniques, and plausible 

applications. Within this segment, we elucidate techniques employed for the synthetic 

simulation of Electroencephalogram (EEG) signals, leveraging mathematical functions 

and established Python libraries. The veracity of these simulated signals vis-`a-vis their 

genuine counterparts is also appraised. 

 Simulation of EEG Frequency Bands 

EEG signals comprise various frequency bands, each indicative of distinct neural 

activities and states of consciousness. It is crucial to note that the simulations of these 

frequency bands are grounded in the information elaborated upon in Section 3.2. Each 

band is representative of specific neural patterns and consciousness states, as evidenced 

in prior studies [16, 18]. 

– Delta Band: Predominantly observed during profound sleep-in adults, these waves 

are contrived using sine waves oscillating between 0 and 4 Hz. 

– Theta Band: Largely detected during phases of shallow sleep and contemplative 

states, simulated via sine waves fluctuating between 4 and 7 Hz. 

– Alpha Band: Customarily linked to tranquility, these waves are simulated within 

the 8 to 12 Hz frequency range. 

– Beta Band: Emblematic of vigilant states, these waves are derived from 

frequencies surpassing 13 Hz. 

– Gamma Band: Pertaining to cognition and alertness, gamma oscillations are 

simulated within a 30 to 70 Hz range. 

Central to this simulation is the generate-band () function from Algorithm 1, which 

facilitates sine wave creation based on stipulated parameters, encompassing frequency 

bands, amplitude, span, noise, and more. 

 Noise Integration 

Given that authentic EEG is pervaded by multiple noise sources, it is essential to 

integrate noise within the simulations becomes. 

– White Noise: Defined by its unwavering spectral density across all frequencies, 

it’s derived from the np.random.randn() function. 
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– Pink Noise: Exhibiting a frequency-dependent diminishing power spectrum, it’s 

the culmination of aggregated white noise. 

– Brown Noise (or Brownian Noise): Symbolizing the integrated accumulation of 

white noise, it portrays stochastic fluctuations dependent on time. 

Subsequently, Fig. 3 illustrates a code for generating synthetic EEG signals by 

integrating various frequency bands with noise. For those unfamiliar with coding 

paradigms, this code showcases the emulation of an authentic EEG signal, 

encapsulating potential “interferences” or inherent noises characteristic of 

authentic measurements. 

Algorithm 2. Synthesis of Spike-Wave Cluster in EEG Signals. 

IIInput: sfreq (sampling rate), group_duration (optional, default 3 seconds) 

Output: group_data (synthesized spike-wave cluster data)  

1: generate_spike(amplitude, duration, sfreq) function: 

1.1: Compute n_samples ← int(duration × sfreq) 

1.2: Formulate spike employing a Gaussian function with a standard deviation of 

n_samples/7 

1.3: Return amplitude × spike / max(spike) 

2: generate_slow_wave(amplitude_wave, duration, sfreq) function: 

2.1: Compute n_samples ← int(duration × sfreq) 

2.2: Configure time ← array spanning from 0 to n_samples, incremented by 1/sfreq 

2.3: Formulate slow_wave via a sinusoidal function with a 2 Hz frequency (Delta wave) 

2.4: Return amplitude_wave × slow_wave 

3: Initialize amplitude_spike and duration_spike with random values 

4: Initialize amplitude_wave and duration_wave with random values 

5: Compute n_samples ← int(group_duration × sfreq) 

6: Initialize group_data with a zero-valued array of size n_samples 

7: Calculate n_spikes using a random value between 9 and 12 

8: Set current_start_index ← 0 

9: For _ in range(n_spikes) execute: 

9.1: Refresh amplitude_spike and duration_spike with random values 

9.2: Fabricate spike employing generate_spike function 9.3: If a random number is below 

0.8, refresh amplitude_wave predicated on amplitude_spike; 

9.4: Refresh duration_wave with a random value 

9.5: Construct slow_wave via generate_slow_wave function 

9.6: If current_start_index + spike length + slow_wave length is \(\leq\) group_data length: 

9.6.1: Append spike to group_data at current position 

9.6.2: Append slow_wave to group_data at the subsequent position 

9.6.3: Update current_start_index 

10: Return group_data 

End of Algorithm 

Fig. 4. This algorithm emulates the emergence of spike-wave clusters, a phenomenon recurrently 
observed within EEG signals. Individual spikes and slow waves are synthesized and 
amalgamated, resulting in a group pattern. 
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 Emulation of Distinctive EEG Phenomena 

Recognizing and emulating distinctive EEG patterns, especially those concomitants 

with clinical manifestations, is paramount. The functions generatespike(), generate-

slow-wave(), and generate-spike-wave-group() are indispensable for simulating spike 

waves, slow waves, and spike-slow wave clusters, respectively, in alignment with the 

theory previously delineated under ”EEG Signals and Key Features.” 

Consequently, Fig. 4 emphasizes the emulation of a distinctive EEG phenomenon: 

the spike-wave cluster. This pattern is ubiquitously observed in EEG, particularly in 

certain disorders. The code synthetically renders this pattern, facilitating training and 

research endeavors. 

4.2 EEG Synthetic Signal Generator 

The signal generator module is quintessential in synthesizing EEG datasets. Previously 

delineated functions enabled the generation of EEG signals, each harboring 

unique characteristic. 

 

Fig. 5. An illustrative schematic of the signal-generator.py script. 

 

Fig. 6. Results stemming from the default generation paradigm. a) Generation interface 

showcasing Dash indicators. b) Real-time visualization of file generation within the 

assets directory. 
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For a detailed understanding, it is crucial to refer to the theoretical descriptions of 

these waveforms, definitions of EEG frequency bands, and a comprehensive 

explanation of the generating functions provided in Section 3.2. 

The software design emphasizes three core elements—modularity, scalability, and 

consistency—essential for a robust and reliable implementation. These elements are 

manifest in the tool’s architecture, which segregates specific functionalities into distinct 

modules: user interface (UI) definition, signal generation, and callback management. 

Fig. 5 provides a schematic representation of the script used for signal generation, 

highlighting the modular structure that incorporates essential libraries, constant 

parameters, and functions to produce a coherent and customizable EEG signal output. 

The Python script outlined above and visualized in Fig. 5 is designed with a clear 

separation of concerns, allowing for independent development, testing, and 

maintenance of each component. The ‘imports’ section lists the essential libraries that 

provide the mathematical and signal processing functionalities required to generate 

EEG signals. 

The ’constants’ delineate the signal parameters and EEG frequency bands, which are 

fundamental to simulating the diverse aspects of EEG signals accurately. The 

‘functions’ are a suite of tools developed to construct the EEG signal, incorporating 

various waveform patterns, such as spikes, slow waves, and their combinations, thus 

simulating complex neurological phenomena. 

This structure not only aids in creating a clear and maintainable codebase but also 

ensures that the signal generation process is transparent and adaptable to changes in 

requirements or enhancements in EEG signal research. 

4.3 Application Overview 

Situated within the realm of EEG research, this endeavor is oriented towards the 

synthetic generation of EEG signals, manifesting distinct morphologies such as spike-

waves, slow-waves, and spike-slow wave amalgamations. Engineered in Python, 

leveraging Dash, the application proffers two predominant operational modes: 

– Default Generation: Here, users primarily define parameters like channel count 

for visualization, wave intervals per channel, and desired signal sheet count. 

As depicted in Fig. 6, selection tools are available for waveform types, wave count 

per channel, sheet count (considering it generates complex and transient signals), and 

channel count. Additionally, an export functionality allows formats including “.txt”, 

“.edf”, and “.png”. An integrated Plotly visualization offers real-time insights 

before exportation. 

– Detailed Generation: This mode endows users with intricate control over 

generation parameters, as visualized in Fig. 7. Parameters encompass waveform 

amplitude, duration, sampling rate, and noise infusion. 

Users can refine parameters: waveform selection, amplitude range in µV, signal 

duration in seconds, sampling frequency, and noise integration. 

For compounded EEG signals, users have the flexibility to define frequency bands 

such as delta, theta, alpha, beta, and gamma, inclusive of noise conditions and EEG 
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amplitude in µV. Visual feedback is facilitated via an interactive Plotly dashboard, 

delineating both aggregated and channel-specific views, complemented by MNE 

formatted visual outputs for user convenience. 

A hallmark feature of this platform is its adeptness in exporting the synthesized 

signals in a plethora of formats, namely “.edf”, “.png”, and “.txt”. Examples of images 

generated by the application are shown in Fig. 8 below. 

 Evaluation 

EEGLAB, a prominent tool in the neuroscience domain, offers an extensive range of 

functionalities for EEG processing. To ascertain the compatibility and usability of the 

synthetically generated signals with this tool, EEGLAB was employed for rigorous 

testing. Fig. 9 provides a comprehensive visual representation of how the signals, 

generated by our tool, integrate and perform within the EEGLAB environment. 

 

Fig. 7. Signal customization interface juxtaposed with a preliminary visualization of 

resultant signals. 

 

 (a) (b) 

Fig. 8. Sample visual outputs in “.png” format, generated by the application. Visualizations 

encompass a) spike-wave formations, b) spike-slow wave configurations, rendered in an 

optimized MNE format for enhanced visualization. 
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In Fig. 9 the initial three illustrations (a-c) are derived from EEGLAB, showcasing 

the integration and analysis capabilities of this software with the signals generated by 

the “EEG signal generation tool for epiloptogenic morphologies”. These sections 

demonstrate how the “.edf” file, synthesized by our application, is incorporated into 

EEGLAB followed by the display of temporal channel analyses and the validation of 

signal authenticity via coherence analysis. 

Conversely, illustrations (d-f) represent various facets of the “EEG Synthetic Signal 

Generator for Epiloptogenic Morphologies” application. These include the portrayal of 

spike waveforms within a specific time frame, an initial snapshot of the application 

interface, and a conceptual diagram that delineates its modular structure. Together, 

 

 (a) (b) 

 

 (c) (d) 

 

 (e) (f) 

Fig. 9. a) Integration of the “.edf” file, synthesized within our application, into MATLAB’s 

EEGLAB. b) Temporal channel display within EEGLAB. c) Validation of signal authenticity via 

coherence analysis in EEGLAB. d) Illustration of spike waveforms within a 6-second viewing 

window. e) Initial snapshot of the application, spotlighting both rapid and detailed generation 

facets. f) Conceptual diagram underlining the application’s modular architecture. 
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these elements highlight the application’s versatility in EEG signal generation and its 

compatibility with EEG processing tools like EEGLAB. This integration underscores 

the potential of the tool to provide EEG signals with valuable information for 

processing, analysis and study, especially in the context of epiloptogenic morphologies. 

4.2 Signal Generation Precision 

Upon juxtaposition of signals exhibited within our application against those within 

EEGLAB, there emerges a notable uniformity. Such congruence predicates that 

resultant analyses on the signal are both valid and analogous across diverse platforms. 

Nonetheless, an exhaustive similarity analysis remains pending. Leveraging 

externalized tools, exemplified by EEGLAB, validates the simulator’s congruence 

and compatibility. 

Such synergies pave the way to amalgamate the proficiencies inherent in both 

platforms, ensuring that the system interoperates seamlessly within industry standards. 

This facilitates integration with various platforms, thereby spawning datasets that 

catalyze algorithmic development in EEG signal analysis. Fig. 10 illustrates the tool’s 

ability to reproduce realistic EEG signal patterns, comparing a synthetically generated 

signal with a real. 

4.3 Future Work 

The next phase of development for this project is to undergo meticulous scrutiny by the 

medical fraternity. Such peer reviews are indispensable for affirming the authenticity 

of the generated signals and can unearth potential enhancements to the tool. Continuous 

feedback from medical experts remains vital to synchronize the tool with contemporary 

trends and revelations within the electroencephalography domain. 

This process will not only validate the precision of the signal generation but also 

open avenues for its application in medical research and diagnostics. The goal is to 

establish the tool as a reliable resource for generating EEG data, particularly in areas 

where real data may be limited or inaccessible. 

 

Fig. 10. A Comparative Display of Synthetically Generated EEG Signal (top) and EEG Images 
fragments from John M. Stern’s “Atlas of EEG Patterns”. 
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5 Conclusions 

Electroencephalography (EEG) has steadfastly remained an instrumental paradigm in 

discerning cerebral dynamics. The meteoric advancements in analytical methodologies, 

coupled with integrated toolsets, have exponentially magnified EEG’s pertinence. This 

endeavor endeavors to bridge the lacuna in synthetic EEG signal generation, facilitating 

the synthesis of waveforms mirroring genuine EEG morphologies. By harnessing 

mathematical paradigms and Python-centric programming, this tool has been 

meticulously engineered to simulate an array of EEG attributes, ranging from diverse 

frequency bands to specific events like spike waveforms. 

An authentic EEG signal simulation mandates the infusion of noise, thereby ensuring 

data representation fidelity in real-world scenarios. The modular code architecture 

accentuates the project’s adaptability and scalability, preemptively addressing 

prospective advancements in biosignal research. Its innate compatibility with renowned 

tools, such as EEGLAB, solidifies its prospective role in multi-platform integrations 

and expansive collaborations. 

Importantly, the generation of synthetic EEG signals offers significant benefits, 

particularly in the realm of machine learning. Tools such as the one developed in this 

project contribute significantly to the training of intelligent systems, which require large 

datasets for effective learning. The synthetic signals generated can provide a rich, 

controlled variety of data, crucial for training robust machine learning models, 

especially in applications where real EEG data might be scarce or difficult to obtain. 

In essence, while this initiative accentuates and augments the offerings of pre-

existing platforms, it concurrently introduces a distinctive suite of features, poised to 

revolutionize EEG signal synthesis and simulation realms. Future directions encompass 

presenting this project to the medical domain, soliciting invaluable feedback to enhance 

signal precision and utility. 

Potential extensions could also include a wide variety of default configurations 

tailored to medical requirements. This application, with its multifaceted offerings, 

could seamlessly integrate into the toolkit of EEG researchers, propelling the realm of 

EEG signal synthesis and simulations to unprecedented heights. 
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